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Abstract

With the development of finite element method and computer technology, the complete modeling of the
forming of a 3D sheet metal part is becoming realistic. However, an accurate 3D simulation is usually too
time-consuming to be used in the early stage of design. One solution is to model the straight side of a 3D
part as a plane strain problem and the corner section as an axisymmetric problem. Unfortunately, the
axisymmetric solution often over-predicts the severity of the deformation at the corner and leads to a very
conservative design. In this study, a modified axisymmetric model with a center offset is proposed to
predict tearing failure in the corner sections of 3D parts. The proposed offset is found to be a function of
the center strains, failure height, and tooling/process parameters, including tooling geometry, material
properties, friction coefficient, and restraining force provided by the binder. Finite element analyses of
both 3D and 2D axisymmetric models for square and rectangular cup forming are utilized to verify the
proposed concept and to define the function. Excellent predictions of the failure heights are obtained. The
proposed model enables engineers to rapidly specify the right amount of the restraining force in the corner
section based on the desired center strains and forming depth. A detailed design algorithm is provided.
1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The competitive global market pressures industries to shorten their development cycles and to
reduce manufacturing costs. One solution would be to have reliable simulation models to aid
product and process design during the early stages of development. As a key process in the
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automobile industry, extreme efforts have been made to numerically simulate sheet metal forming
processes using the Finite Element Method (FEM). However, in many cases, the setup and compu-
tation time for the complete modeling of a 3D part forming is still too long to make simulations
effective in assisting the design process. Therefore, simplified 2D models, which can predict
forming processes reasonably well, are in great demand.

The methodology of using a simplified model was explored in Doege [1] where the factors
affecting the formability were examined. In his analysis, an equivalent punch diameter was found
for rectangular or irregular parts by calculating a circular punch of equal cross sectional area. In
other words, an axisymmetric cup with an equivalent (fictitious) diameter was used to predict the
limiting draw ratio of the rectangular or irregular cup. The clearances between the die and the
punch were the same in the 3D and 2D models. The binder force used in the 2D model was
calculated based on the material strength and tooling geometry. The draw ratio in his paper was
defined as the ratio of blank diameter to punch diameter. The limiting draw ratio based on the
equivalent cylinder cup was found to be lower than that of the rectangular part obtained in indus-
trial stampings. The author attributed the inconsistency to the use of draw beads to increase the
restraining force in the straight sides compared to the corner area in a rectangular part forming.

Saran et al. [2] analyzed the forming of complex parts with irregular tooling shapes using
section analysis. In each section, a plane strain condition was assumed. The analysis can success-
fully simulate the deformation of many local sections where the strain states are close to plane
strain. Brooks et al. [3] also demonstrated the application of 2D models in the design of a sheet
metal forming process. A plane strain or axisymmetric assumption was made along a critical
section of the die. Since these 2D models provided quantitative and qualitative information for
the die design, they helped to eliminate the time intensive die try out method. Walker et al. [4]
suggested that axisymmetric cup analysis could provide approximate, though conservative, sol-
utions for near axisymmetric conditions, where the circumferential stress gradient is small.

Wong et al. [5] studied the corner design in deep drawn rectangular parts. They pointed out
that axisymmetric cup analysis was not adequate to solve the corner deep drawing of rectangular
parts. In the square cup forming process, the sheet metal originally in the straight section flows
to the corner while it is drawn into the die cavity assisting the deep drawing in the corner region.
If the corner part is treated as an axisymmetric cup, the predicted failure height is much lower
than the experimental data. Several attempts were made to modify the axisymmetric boundary
conditions such as changing the restraining force and blank size to promote material draw-in. The
results were improved somewhat, but punch failure heights did not reach the level found in an
actual 3D forming.

From the above review and practice in industry, simplified section analysis assuming a plane
strain condition has been proven successful in designing the straight sections of stampings. How-
ever, the axisymmetric solution for the corners of the parts over-predicts the severity of the defor-
mation and provides a very conservative design. In Section 2 of this paper, we propose a simplified
2D axisymmetric model with a center offset to predict tearing failure in the corner sections of
complicated 3D parts. Section 3 serves the purpose of calibrating our numerical model so that
results obtained from the following numerical analysis are reliable. To achieve this, deep-drawing
experiments of a square cup were conducted. Using the FLD0 as a failure criterion, excellent
agreement in failure heights between numerical and experimental results was achieved. The
method of finding the correct center offset is illustrated in Section 4. Section 5 discusses the
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effect of tooling/process parameters on the center offset. Through numerical simulations of square
and rectangular cup drawing, the offset is found to be a function of center strains, forming depth,
and the tooling/process parameters. Finally, in Section 6, a design algorithm is formulated to
obtain the binder force required for a desired center strain and forming depth.

2. Axisymmetric model with a center offset

This work aims to provide a methodology for building a simplified 2D axisymmetric model
for predicting the tearing failure height in a corner section of a complicated 3D part. We will
start with rectangular cup forming to establish the key elements in this simplified approach and
will generalize the relationship in upcoming research.

Fig. 1 shows the plan view of a quarter of a rectangular cup and simplified 2D models.B1, B2

and P1, P2 are half of the blank and punch sizes respectively,c is the clearance between the
punch and the die, andb1, b2 are the length of the blank under the binder in the two directions.
The subscripts 1, 2 denote the dimensions in thex andy direction, respectively. Region OABD
is considered as the corner of the part, and point C is the center of the rectangular cup. The
conventional method treats the corner part (OABD) as an axisymmetric cup and uses OEF as the
simplified 2D axisymmetric model. As a result the model does not take into account the material

Fig. 1. Plan view of a quarter of a box and the simplified axisymmetric models with and without offset.
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stretched into the corner section from under the punch and the material flowing toward the corner
from the straight sides as the punch advances. Moreover, such a model cannot reflect the effects
caused by varying the size and aspect ratios of the punch. Consequently, it provides conservative
results, meaning that the corners can actually be formed deeper than predicted.

Here, we are proposing a new modeling methodology to address this issue, that is, adding a
center offset to the axisymmetric model. Fig. 1 shows the axisymmetric model, O9E9F9, with a
center offsetroff. The rs andRs are radii of the die opening and the blank size in the conventional
axisymmetric model, respectively. The deformation of the extra material under the punch brought
by the offset will delay the failure of the axisymmetric part. As a result, the 2D model with an
adequate offset can reach the failure height of the 3D model and can be used to design the
appropriate restraining force for the desired forming operation.

A successfully formed 3D part should have both the desired depth that is close to the failure
height and the desired center strain to satisfy the geometry as well as the strength requirements.
In the design of the rectangular cup forming process, the binder force to be used in the straight
side can be found by using a 2D sectional analysis model according to both the desired center
strain and the desired depth. To ensure the success of the forming process, a unique binder force
needs to be applied at the corner such that the cup can be formed to the desired depth with the
desired center straineC, which is the average of in-plane principal strains at point C in Fig. 1.
Similarly, there is also an axisymmetric model with a unique offset that can be formed right to
failure at the desired depth with a binder force equivalent to the binder force applied at the corner.
Simulations as shown in the latter part of this paper verified that a relationship exists between
the maximum center strain of the square cup and the center offset of the axisymmetric model.
Systematically, this relation can also be formulated as follows.

In the 3D model, the binder force (Fb) needed depends on the desired average in-plane center
principal strain (eC=(e1C+e2C)/2) of the 3D cup, the failure height (Pd), material properties (m),
friction coefficient (m) and the geometry of the tooling (g). This can be expressed as:

Fb5f1(m,g,m,Pd,eC). (1)

In the 2D axisymmetric model, the failure height (y2D
p ) is decided by the center offset (roff as

shown in Fig. 1), the samem, m andg as that of the 3D model, and the binder force (Fe
b), which

is equivalent to the restraining force per unit length along the die profile in the 3D model. This
can be expressed as:

y2D
p 5f2(roff,m,m,g,Fe

b) (2)

The failure height of the 2D axisymmetric model should match that of the 3D model. Therefore,1

Pd5y2D
p (3)

As mentioned above, the restraining force per unit length along the die profile should be the same
in the 2D and 3D models. Therefore, the equivalent binder force obtained in the 2D model should
be converted to the binder force used in the 3D forming process according to Eq. (4).

1 Later in Section 5, we illustrated this relation should bey2D
p =kPd, wherek is a function of tooling geometry. However, this will

not affect the argument of uniqueness put forward in this section. Therefore, for simplicity, we usePd=y2D
p here.
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Fe
b5

Fb(A2+A4)(roff+rs)q
2p(A1+A2+A3+A4)rs

(4)

whereFb is the total binder force applied in the 3D rectangular cup forming,A1, A2, A3 and A4

are the binder contact areas as shown in Fig. 1,rs is the distance from the axisymmetric center
O to the inner edge of the binder (Fig. 1) andq is the angle at the center of the axisymmetric
model as shown in Fig. 1. Whenq=2p, Fe

b is corresponding to the entire binder force applied in
a full 2D axisymmetric cup forming.

With the above equations, the center strain of the 3D model can be related to the center offset
in the 2D model. First, they2D

p in Eq. (2) can be replaced byPd using Eq. (3). ThenFe
b in Eq.

(2) can be replaced byFb using Eq. (4). Finally, Eq. (1) can be substituted into Eq. (2) to eliminate
Fb. The combination of the Eqs. (1)–(4) reveals that the center offset of the 2D model can be
expressed as:

roff5f(m,eC,g,m,Pd) (5)

This relationship indicates that the unique offset for the axisymmetric model can be obtained by
using the desired center strain and the failure height of the 3D model. Since the center strain is
obtained at the failure height, the optimized design must have been achieved. The functionf in
Eq. (5) is hereinafter referred to as the offset function. A detailed form of the function is given
later in the paper.

3. Study of Numisheet’93 square cup

The square cup in Numisheet’93 [6] was studied to demonstrate the effectiveness of the pro-
posed model. A variety of deep drawing tests with various binder forces and punch strokes were
conducted. The experimental results provided very important information for detecting cup failure
heights in the numerical simulations. By measuring the strains at the critical location below the
punch radius at the corners, the unconventional forming limit diagram, which is based on the
strain path in the forming process, was obtained. The obtained FLD0 can then be used as a criterion
to detect necking in the numerical models. Since cup failure heights obtained from the numerical
simulations match experimental results very well, the failure criterion and our numerical models
are proven to be reliable and accurate. Therefore, failure heights in this research can be found
numerically without further experiments.

3.1. Experiments of cup forming

The geometry of the tooling is the same as the Numisheet’93 benchmark test as shown in [6].
Experiments were conducted in a MTS Formability System, Model 866.11Q-A2, with a clamping
capacity of 2000 kN, a punch capacity of 1000 kN, and a maximum punch stroke of 225 mm.
The material used in the experiments was mild steel (AKDQ), with a thickness of 0.796 mm,
Young’s modulus of 206 GPa, Poisson’s ratio of 0.3 and averageR-value of 1.705. The tensile
properties of the material are given in Table 1. The friction coefficient was measured as 0.1 by
a draw bead simulator. (The lubricant used in the experiment was Ferrocok 61A US.) Blanks
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Table 1
Tensile properties of the test material

Angular offset from rolling Yield stress (MPa) Ultimate tensile n Value K (MPa)
direction (degree) stress (MPa)

0 174.2 314.7 0.207 537.4
45 174.8 324.8 0.199 547.4
90 197.4 310.7 0.198 523.2
Mean s=540.6e0.2037 (MPa)

were sheared to a size of 150 mm×150 mm, and a 2 mm circle grid pattern was applied for
measuring strains. Parts were then formed with a punch speed of 10 mm/second. Care was taken
to assure that the part was symmetrically aligned with respect to the punch and binder, and the
rolling direction was oriented consistently in the tooling. The maximum forming depth for the
experiments was set at 43.5 mm. Binder force was varied in the experiments to the following
values: 19.6, 40, 60, 70, 80, 90, 100, 120, 160, 200, and 240 kN. For binder forces less than 90
kN, the full punch stroke of 43.5 mm was completed without tearing failure in the parts. Buckling
in the side wall of the parts occurred for binder forces less than 70 kN. To determine the maximum
forming depth before necking failure occurred for parts with a binder force greater than 100 kN,
samples were run with different punch strokes to induce tearing failure in the parts. These forming
depths assured that tearing failure would occur for all of the binder force values in at least one
corner of the samples. Engineering strains were then measured from the circle grid pattern and
were converted to true strain for comparison with simulation results. Efforts were also made to
find the punch stroke just prior to failure, i.e. just as splitting was beginning to occur. More tests
were then conducted around that forming height to catch the critical strains before and after
tearing failure occurs. Thus, more strain points close to the forming limit curve were obtained.

3.2. Experimental results

During the experiments, punch force was recorded along with punch displacement. Fig. 2 shows
the punch force trajectory for the binder force case of 100 kN. Necking was considered to occur
as the binder force reached its maximum value and started to drop. Following necking, splitting
occurred at the point of the large drop in the punch force. Using this criterion, punch displacements
where necking and splitting occurred for all the binder forces used in the test were obtained.
Table 2 shows the average necking and splitting heights for the Numisheet’93 geometry.

Another important measurement from the experiments was the strains at the critical location
in the formed cups. The strains were obtained by measuring the circle grids at the punch radius.
Most failures occurred at or above the corner point tangent to where the blank separated from
the punch nose. Major and minor strains at both the necking or splitting corners and the non-
failure corners were measured. Due to the symmetry of the cup, the strains at the non-failure
corner are quite close to those at necking. Fig. 3 shows the collection of measured critical true
strains. The solid line dividing the failure and non-failure points represents the left side of the
forming limit diagram of the material. Notice that this obtained Forming Limit Curve (FLC) might
be different from the standard FLC for this material due to the nonlinearity of strain paths involved



119H. Yao et al. / International Journal of Machine Tools & Manufacture 40 (2000) 113–131

Fig. 2. Punch force trajectory for the 100 kN binder force case in the forming of the Numisheet’93 cup.

Table 2
Average forming heights of the Numisheet’93 square cup

Binder force (kN) 100 120 160 200 240 280

Splitting depth (mm) 30.95 27.16 21.45 17.94 16.90 16.80
Necking depth (mm) 26.58 23.84 20.43 17.52 16.57 16.42

in this test. This plot shows the failure strain levels in the plane strain condition (FLD0=0.3) and
those on the left-hand side of the forming limit diagram. This FLD0 was used for determining
necking in the simulations and proved to be a very accurate failure criterion as demonstrated in
the following section.

3.3. Numerical simulation

3.3.1. Finite element model
To find the offset function,f, in Eq. (5), the finite element model of the above square cup

forming was created and the numerical results were compared with the experimental results. The
deformed mesh of the finite element model is shown in Fig. 4. A quarter of the square cup is
modeled to take advantage of the symmetric conditions. Proper symmetric boundary conditions
were applied. A commercial explicit three-dimensional finite element program LS-DYNA3D [7]
was used for the simulation. The elements used were 4-node Belytschko–Tsay shell elements,
which provide five integration points through the thickness of the sheet metal. This element
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Fig. 3. Measured distribution of critical strains from Numisheet’93 square cup forming tests and the Forming Limit
Curve (FLC).

accounts for both the stretching and bending incurred in the sheet. The tooling was modeled as
rigid surfaces. A Coulomb friction law was employed to account for the frictional force with a
friction coefficient of 0.1, the same as that measured in the experiment. The material was assumed
to be transverse anisotropic (isotropic in the plane of the sheet metal) with isotropic strain harden-
ing. The yielding of the material was modeled by Barlat’s yield function [8], which can be
expressed as:

F5auK11K2uk1auK12K2uk1cu2K2uk52s̄k (6)

wherek=6 is used for mild steel, ands̄ is the equivalent yield stress. The detailed definition of
coefficientsa, c and stress combinationKi=1,2 are given in [7,8].

3.3.2. Verifications of the numerical model
The numerical model with Barlat’s yield function was first verified by using material properties

of the mild steel specified in Numisheet’93 [6]. The thickness strain distributions of the deformed
cup were compared with the experimental data reported in [6] as shown in Fig. 5. The thickness
distribution of the deformed cup was also compared with the results obtained by using Hill’s
1948 yield criterion. The results show that using Barlat’s yield criterion with the exponentk value
equal to 6 agrees with the localization of the deformation better than using Hill’s 1948 yield
criterion. Overall, very good agreement between experiments and simulations using Barlat’s yield
criterion was obtained.

Fig. 6 shows the plot of major strains versus punch displacements for a few elements along
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Fig. 4. Deformed finite element mesh of the square cup forming.

the radial direction at the critical punch nose area. Cup failure in the simulation was identified
to be the dramatic increase in the deformation of one element. Obviously, the principal strain of
element No. 346 is blowing up while strains of the other elements are leveling off. Necking is
considered to have occurred when the maximum principal strain of element 346 reaches the FLD0,
which is 0.3 as determined by the forming limit diagram obtained in the experiments. By using
this method, the failure heights of the cups were determined and compared with the experimental
data as shown in Fig. 7. Excellent agreement was achieved. The numerical model and the failure
criterion are therefore validated by the experimental data.



122 H. Yao et al. / International Journal of Machine Tools & Manufacture 40 (2000) 113–131

Fig. 5. Comparison of the thickness strain distribution along the diagonal path.

4. Finding the center offset

With confidence in our numerical model and failure criterion, the modified axisymmetric model
with a center offset as proposed in Section 2 was built to match the failure height in the 3D
model. By adding the offset, the blank size and the punch size as well as the binder size were
increased by a specific amount. The binder force in the 2D model was changed according to Eq.
(4). However, the clearance between the punch and the binder was not affected. Finally, by match-
ing the failure heights, a unique offset can be found for a certain cup forming case.

5. Effect of tooling/process parameters on offset

Following the study of the Numisheet’93 model, the effects of tooling/process parameters on
the offset were examined. A number of deep drawing simulations were conducted for square cups
with variations in material, friction and tooling geometry. The offset was found to be a function
of center strain, forming depth, and the tooling/process parameters.



123H. Yao et al. / International Journal of Machine Tools & Manufacture 40 (2000) 113–131

Fig. 6. Strain histories of the critical area elements in the square cup simulation with a binder force of 160 kN and
a friction coefficient of 0.1.

5.1. Cases examined

The basic model for this study was the Numisheet’93 square cup. A number of 3D models were
simulated with various combinations of geometry, material properties and friction coefficients. For
each combination, binder forces, ranging from one that barely caused the cup to split to one
beyond which the failure height was leveling off, were applied in the simulations. Matching the
failure heights of the 2D and 3D models, offsets for the 2D axisymmetric models were also found
by trial and error. Using the data from different models described below, we generated the function
reflecting the relationships between the offset and variables such as center strain, friction coef-
ficient, FLD0 of the material and geometric parameters of the tooling in Section 5.2.

Geometry variations studied in this paper include scaling up the entire Numisheet’93 model to
5 or 10 times the original size and increasing the punch–die clearance by 5 to 10 times the initial
value. The thickness of the blank was kept constant. When the model size was scaled up, both
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Fig. 7. Failure height diagram of the Numisheet’93 cup obtained from experiments and simulations.

the center strain and the failure height were increased. When increasing the punch–die clearance,
the punch size was unchanged while the blank and binder sizes were increased by an equal
amount. Increasing the clearance is in effect increasing the amount of material in the draw wall
area. As a result, the failure height was increased without significant change to the center strain.
Finally, the variations of the size and aspect ratios of the punch were studied. Changing the punch
size and aspect ratio is in fact changing the draw ratio,d, of the model, which is defined in this
paper as:

d5
1
2SB1

P1

1
B2

P2
D (7)

whereP1, P2, B1 andB2 are illustrated in Fig. 1.
Friction coefficients of 0.06, 0.1 and 0.15 were used in the simulation. As friction force
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Table 3
Simulations of square cup formingc

Case No.a Materiald FLD0 m P1×P2 (mm)b B1×B2 (mm)b c (mm)b

AKDQ f10 s1cl1 AKDQ 0.3 0.10 35×35 75×75 2
AKDQ f10 s5cl1 AKDQ 0.3 0.10 175×175 375×375 10
AKDQ f10 s10cl1 AKDQ 0.3 0.10 350×350 750×750 20
AKDQ f10 s5cl5 AKDQ 0.3 0.10 175×175 415×415 50
AKDQ f10 s5cl10 AKDQ 0.3 0.10 175×175 415×415 50
AKDQ f15 s5cl5 AKDQ 0.3 0.15 175×175 415×415 50
AKDQ f06 s5cl5 AKDQ 0.3 0.06 175×175 415×415 50
A180DR f10 s5cl5 A180DR 0.3 0.10 175×175 415×415 50
AA6111 f10 s5cl5 AA6111 0.223 0.10 175×175 415×415 50

a The geometry of case AKDQ f10 s1cl1 is the square cup of Numisheet’93 model.
b The P1, P2, B1, B2 and c are illustrated in Fig. 1.
c The thickness of the blank is kept at 0.796 mm in all the models.
d Material types: A180DR—High strength steel; AA6111—Aluminum AL6111-T4; AKDQ—Mild steel.

decreases, the failure height and the corresponding center strain increase due to more stretching
of the material under the punch. Therefore, the influence of the friction coefficient must be taken
into account.

Various materials of steel and aluminum were used in the simulation. Although these materials
have variousK, n and R values, the most significant difference is their FLD0 which directly
determines the failure height of the square cup. Summaries of these models are listed in Tables
3 and 4.

5.2. Offset function and its verification

The results obtained from the above simulations for square cups in Table 3 are summarized in
Fig. 8, where offset is plotted against the center strain in the 3D cup. The labels of the curves
correspond to the case numbers in Table 3. Each data point represents one simulation with one

Table 4
Simulations of square and rectangular cup forming

Case number Material FLD0 m P1×P2 (mm) B1×B2 (mm) c (mm)

S1cl5 1 1 1 AKDQ 0.3 0.10 60×60 108×108 10
S1cl1 0.5 1 1 AKDQ 0.3 0.10 60×35 100×75 2
S1cl1 0.5 1 1.5 AKDQ 0.3 0.10 85×35 125×75 2
S1cl5 1 1 2 AKDQ 0.3 0.10 110×60 158×108 10
S5cl5 1 1 1 AKDQ 0.3 0.10 300×300 540×540 50
S5cl5 1 1 2 AKDQ 0.3 0.10 550×300 790×665 50
S5cl1 0.5 1 1 AKDQ 0.3 0.10 300×175 500×375 10
S1cl5 2 1 3 AKDQ 0.3 0.10 160×110 208×158 10
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Fig. 8. Center offset versus center strain for square cups listed in Table 3.

binder force. Obviously, there is a trend that the offset is decreasing when the center strain is
increasing.

For the cases in Table 4, a change in the draw ratio is created due to variations in the punch
dimensionsP1 and P2 (Fig. 1). The punch displacement,Pd, increases with the decrease of the
draw ratio,d. Therefore in this work, a draw ratio factork and a reduced failure height,y2D

p , are
introduced to maintain the trend between offset versus center strain as shown in Fig. 8 and they
are defined by

k5
d1d2

d0d
(8)

and

y2D
p 5kPd (9)

whered0=B0/P0, d1=B1/P1, andd2=B2/P2. For the special case, when the change of the draw ratio
is only caused by clearance variation whileb/P=b0/P0, k is equal to 1. (In Numisheet’93 model,
P0=35 (mm),B0=75 (mm) andb0=33 (mm), andb is illustrated in Fig. 1.) The idea is to locate
the offset of a 2D model that is able to reach the modified failure heighty2D

p . The located offsets
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are plotted versus the center strain as shown in Fig. 9. Again, the same trend as seen in Fig. 8,
decreasing offset with increasing center strain is observed.

Even though the offsets are basically inversely proportional to the center strains as shown in
Figs. 8 and 9, no rules can be concluded without normalizing the offsets and failure heights by
the geometric size and other geometric parameters such as clearance and punch size etc. After
some trial and error, the normalized curve (shown in Fig. 10) for the offset was found. The
normalization makes it possible to fit the originally scattered data into a curve and find the law
governing the physics. The curve fitting for the relations of offset versus center strain is plotted
as the solid line in Fig. 10. With some mathematical manipulation, the offset reference curve can
be expressed as:

roff5
0.358FLD2.1286

0 k1.3853

e1.4106
C p4.2318y0.4334

p C0.6411
p m1.0643 (10)

In addition to those defined before, some additional variables in Eq. (10) are defined as the
following with reference to Fig. 1:

1. To normalize the offset and failure height, the geometric size of the model,S, is defined as:

S5k
B
B0

(11)

Fig. 9. Center offset for the normalized failure height versus center strain for square and rectangular cups listed in
Table 4.
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Fig. 10. Normalized curve for offset versus center strain.

2. The center offsetroff (mm) is normalized by the geometric size of the model,roff=r2D
off /S, where

r2D
off is the offset used in the 2D model andS is the geometric size.

3. The center straineC is the averaged center strain, i.e.eC=(e1C+e2C)/2, wheree1C and e2C are
the in-plane principal strains at the center of the cup (point C in Fig. 1).

4. Cp is the ratio of the clearance to the punch size, i.e.Cp=c/P, whereP is the averaged punch
size, i.e.P=(P1+P2)/2.

5. yp is the normalized punch displacement. IfPd represents the actual failure height of the 3D
model, thenyp=(Pd/S)k.

6. p is the normalized punch size ratio, i.e.p=P/(P0S).
7. m is the friction coefficient.

The offset function reflects the physics of the deformation in the deep drawing process. Gener-
ally, with the increase of FLD0 and decrease of friction, the forming depth increases and more
material flow-in occurs. As a result, the offset increases with FLD0 and is inversely proportional
to the friction coefficient. The punch displacement and the center strain are related to each other.
When the binder force is large, the punch displacement will be small, and therefore the center
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strain is large. Hence, the offset will drop when the center strain is increased. The function also
indicates that the clearance, punch size and draw ratio play important roles in the deformation.
Finally, the form of the offset function is independent of the size of the model since both the
offsets and punch displacements were normalized. In addition, Eq. (10) is found to be suitable
for cases where corner radii of the tooling have been changed. In fact, the change of the tooling
corner radius implicitly affects the center strain.

To investigate the accuracy of the offset function, 2D models with the offsets obtained from
Eq. (10) were simulated. The predicted failure heights were then compared with the failure heights
obtained from the 3D models. As seen from Fig. 11 showing the error distribution for predicted
failure heights, very good agreement is achieved. We have a 44% chance that our error of failure
height prediction is within 10% and nearly a 80% chance of having less than 20% error. Only
in a few cases were the errors above 30%. These were the cases when the cup barely reaches
failure under a low binder force. In these cases, a small inaccuracy of the predicted offset can
lead to a false non-failure result. Therefore, special care needs to be taken when low binder forces
are used to reach deep forming heights with small center strains. The punch sizes used in the
simulations range from 70×70 mm to 1100×600 mm. The average error of the predicted failure
height was 14.8% compared to 45.6% when no offset was used. The 2D models with offsets have
made significant improvements in predicting the corner failure heights of 3D cups.

6. Design algorithm

The offset function can be used in designing the corner part of the square and rectangular
cups. For any given geometry, friction coefficient, material properties and desired center strain

Fig. 11. Absolute error distribution of the failure height prediction.
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requirements, the binder force can be easily designed by using the 2D axisymmetric models with
the center offset obtained from Eq. (10). If the obtained binder force is unrealistic, then changes
of geometry or any other tooling/process parameters can be made. The design procedure for a
corner part is as follows:

1. Calculate the geometric size and other normalized parameters,k, S, p, and Cp as defined in
Section 5.

2. Normalize the desired cup forming depthPd by the sizeS and draw ratio factork. The punch
displacement to be used in the offset function can be obtained asyp=(Pd/S)k.

3. Obtain the information of desired center strainseC1 andeC2 corresponding to the requirements
of the part and the values of FLD0 and the friction coefficientm.

4. Use Eq. (10) to calculate the normalized offsetroff. The offset to be used in the 2D model is
r2D

off=roffS.
5. Build a 2D axisymmetric model according to the corner geometry of the part and the calculated

offset r2D
off.

6. Run the 2D model with various binder forces until the forming depthy2D
p is obtained, where

y2D
p =Pdk=ypS. Notice that this 2D axisymmetric problem can be solved by the Finite Element

Method or by analytical solution. The second approach will further improve the ability of
rapidly assessing the manufacturability.

7. Use Eq. (4) to calculate the binder force (Fb) to be used in the 3D forming, which can be
converted according to the ratio of the contact area at the corner (A2+A4) to the complete binder
contact area (A1+A2+A3+A4).

The above design algorithm is being incorporated into the design process used by the manufac-
turing team of General Motors.

7. Conclusion and future work

This work has provided a simplified 2D axisymmetric model with a center offset to efficiently
determine the binder force required for a projected 3D deep drawing process. A relationship exists
between the center strain of the cup and the center offset of the axisymmetric model. Through
curve fitting of the data from the simulations, the offset of the 2D model is found to be a function
of the geometry of the tooling, material properties, friction conditions and center strain require-
ment of the desired 3D cup. The average error of predicted failure height using a 2D axisymmetric
model with the proposed offset was reduced from 45% to 15% compared to models with no
offset. An algorithm is proposed to design the restraining force used in an actual forming process.
The proposed model provides the designer with a powerful tool to rapidly assess the manufactur-
ability of the desired part. This method will be extremely valuable at the early design stage of
sheet metal parts.

Future work will concentrate on geometric variations, including variations of the corner plan
view radiusrs in Fig. 1, blank thickness and punch shape. The offset function and design algorithm
will be improved and verified in the design and simulation of the forming process for complicated
stamping panels.
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